Calculation policy

Rationale

The aim of this document is to provide information on how our school promotes conceptual understanding through a concrete-pictorial-abstract approach. The policy documents a consistent approach using the concrete manipulatives readily available at St John's Green Primary. It also ensures consistency and progression in calculation methods.

Teachers should examine the methods of the previous year group as well as their current class when designing lessons.

The school welcomes a use of a range of manipulatives; however, teachers should refer to this document as starting point for planning learning.

St John's Green Primary
School
Learn to Live, Live to Learn

We

Maths

If learners do not use concrete materials, they cannot understand the mathematics. If they only use concrete materials, they are not doing mathematics'

Gu (2015)

4ash

St John's Green Primary

Year 1 Addition

Using Place value

Count in ones / Counting in tens, e.g. knowing $45+1$ or $45+10$ without counting on in ones
$23+10$

1	2	3	4	5	6	7	8
11	12	13	14	15	16	17	18
21	22	23	24	25	26	27	
31	32	3	34	35	36	37	
41							

Counting on

41

Using number facts
$10=7+3$
$10=3+7$
$10-7=3$
$10-3=7$

Understanding the relationship between addition and subtraction

Count on in ones, e.g. $11+2=7+4=$

Count on in tens, e.g. $45+20$ as $45,55,65$
of $4,5,6,7,8$ and 9, e.g. $7=7+0$ or $6+1$ or $5+2$ or $4+3$
Number bonds to 10, e.g. $5+5,6+4,7+3,8+2,9+1,10+0$

Patterns using known facts, e.g. $4+3=7$ so we know $24+3,44+3,74+3$, etc.

We would also expect year 1 children to have some experience creating groups of ones, using straws or sticks (bundling)
$10=10$ ones $=1$ ten
 used as well as numerals

$11+4=11+3+1$

What is 2 more than 3 ?

Year 1 Subtraction

Using Place value						
Count back in ones / Count back in tens, e.g. knowing $53-1$ or $53-10$						
without counting back in ones	1	2	3	4	5	6
$33-10$	11	12	13	14	15	16
	21	22	23	24	25	26
	31	32	$(33$	-34	35	

Count back in ones, e.g. $11-3=15-4=$

Count back in tens, e.g. 53-20 as 53, 43, 33

Using number facts

'Story' of 4, 5, 6, 7, 8 and 9, e.g. $7-1=6,7-2=5,7-3=4$, etc.
Number bonds to 10 , e.g. $10-1=9,10-2=8,10-3=7$, etc.

Patterns using known facts, e.g. $7-3=4$ so we know $27-3=47-3=$ $77-4=$, etc.

rake away (One quantity is decreased by a provided amount)

Five sweets were on the table. Tom ate two sweets. How many sweets are on the table now?
Comparison (Find the difference) "Key model showing the relationship between addition and subtraction
Tom has five sweets and James has three sweets. How many more sweets does Tom have than James?

5 count back 2
\square

Year 1 Multiplication

Doubling and halving
Find doubles to double 6 using fingers

Grouping
Begin to use visual and concrete arrays and 'sets of' objects to find the answers to ' 3 lots of 4 ' or ' 2 lots of 5^{\prime}, etc.

Counting in 2 s on a beadstring

3 groups of 2 with a number line

Year 1 Division

Doubling and halving
Find half of even numbers up to 12 including realising that it is hard to halve an odd number

Grouping
Begin to use visual and concrete arrays and 'sets of' objects to find the answers to 'how many towers of 3 can I make with 12 cubes?'

Sharing

Begin to find half of a quantity using sharing, e.g. half of 16 cubes by giving one each repeatedly to two children

Children should have experience of creating tens by grouping straws/cubes/sticks

Year 2 Addition

Know 1 more or 10 more than any number, e.g. 1 more than 67 or 10 more than 85
Partitioning, e.g. $55+37$ as $50+30$ and $5+7$ finally combining the two totals: $80+12$

Counting on

$80+12=92$
Add ten and multiples of ten, e.g. $76+20$ as $76,86,96$ or in one hop $76+20$ Add two 2 -digit numbers by counting on in tens then in ones, e.g. $55+37$ as 55 add 30 (85) add 7 (92)

Patterns of known facts

Using addition facts to fill and bridge ten

Year 2 Subtraction

Using Place value
Know 1 less or 10 less than any number, e.g. 1 less than 74 or 10 less than 82 Partitioning, e.g. 55-32 as 50-30 and 5-2 combining the answers: $20+3$

Taking away

$50-\frac{30}{5} \gg=\frac{20}{23}$

Subtract ten and multiples of ten, e.g. 76-20 as 76, 66, 56 or in one hop $76-20=56$
Subtract two 2 -digit numbers by counting back in tens then in ones, e.g. $67-33$ as 67 subtract 30 (37) then count back 3 (34)
Subtracting near multiples, e.g. 74-21 or 57-19

Using number facts

Know pairs of numbers which make the numbers up to and including 10 , e.g. $10-6=4,8-3=5,5-2=3$, etc.

Patterns of known facts, e.g. $9-6=3$, so we know $39-6=33,69-6=63$,
$89-6=83$
Bridge ten, e.g. 52-6 as 52 subtract 2 then subtract 4 more

Find a difference between two numbers on a line, e.g. 51-47

36-12 Using place value

Using number facts

Knowing number facts to 10

Subtraction as difference (counting up)

St John's Green Primary

Year 2 Multiplication

Counting In steps ('Clever' counting)
Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Multiplication - Equal groups
(It is important that children start to understand unitisation at this point)
James buys four tickets for the football match. Each ticket costs £5. How much does he spend?

4 groups of 3 using repeated addition and a number lin

Understanding the commutative law

Understanding the commutative law

	0
	0
	9
	10
	33
	\cdots

Year 2 Division

counting in steps |'Clever counting)

Doubling and halving
Find half of numbers up to 40 , including realising that half of an odd number gives a remainder of 1 or an answer containing a h
Begin to know half of multiples of 10 to 100 , e.g. half of 70 is 35
Grouping
Relate division to multiplication by using arrays or towers of cubes to find answers to division, e.g. how many towers of five cubes can I make from 20 cubes as $\square \times 5=20$ and also as $20 \div 5=$?

Relate to division to 'clever' counting and hence to multiplication, e.g. how many 5 s do $/$ count to get to 20 ?

Sharing
Begin to find half or a quarter of a quantity using sharing, e.g. X of 16 cubes by
sorting the cubes into four piles
Find $\mathrm{x}, 1 / 2,1 / /$ of small quantities
Children learn that division is not commutative

Using number facts
Know halves of even numbers to 24
Know $2 x, 5 x$ and $10 x$ division facts
Begin to know 3 x divisio

Halving multiples of 10 (50)

18 divided by 5 as grouping showing remainders

The
The bar model and fractions

Year 3 Addition

Use place value and partitioning 46p+55p

2)

Use place value and partitioning $232+20$
n Fill and bridge ten (revised year

Add and adjust $33+29=33+30-1$

\qquad

Bar model for addition

Adding fractions with the same denominator

St John' Gree Primary
Year 3 Subtraction

Using place value to subtract $346-40=306$
 the larger, e.g. 121-87

Using number fact
Number bonds to 100 , e.g. $100-35=65,100-48=52$, etc.
Develop counting up subtraction

No column subtraction until year 4

Subtraction of fractions with the same denominator

Subtracting by partitioning 38-22 Using known facts for bridging ten(revise)

- Using the bar model to illustrate the structure of subtraction problems

There are 350 pages in Anbers book On Tuescay, she reads 167 pages of ther book. On Wedressay, she reads the rest of the book How

Year 3 Division

Relative division to multiplication (grouping)
Division as grouping with remainder

Counting in steps ('Clever' counting)
Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s by colouring numbers on the 1-100 grid or using a landmarked line

Grouping
Recognise that division is not commutative, e.g. $16 \div 8$ does not equal $8 \div 16$ Relate division to multiplications 'with holes in', e.g. $\square \times 5=30$ is the same calculation as $30 \div 5=$? thus we can count in 5 s to find the answer
Divide multiples of 10 by single digit numbers, e.g. $240 \div 8=30$
Using number facts
Know halves of even numbers to 40
Know halves of multiples of 10 to 200 , e.g. half of 170 is 85
Know $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}, 8 \mathrm{x}, 10 \mathrm{x}$ division facts
Use division facts to find unit and simple non-unit fractions of amounts within the times tables, e.g. $1 / 4$ of 48 is $3 \times(48 \div 4)$

[^0]

Division with place value sharing numbers greater than 1 Using arrays to link x and division

No formal written division in year 3

Year 4 Addition

Count on to add 3－digit numbers and money，e．g． $463+124$ as $463+100$ $(563)+20(583)+4=587$ or $£ 4.67+£ 5.30$ as $£ 9.67$ add 30 p

Using number facts
Number bonds to 100 and to next multiple of 100，e．g． $463+37,1353+47$
$\underbrace{4}_{460}$

Number bonds to $£ 1$ and to the next whole pound，e．g．$£ 3,45+55 p$ Add to next whole number，e．g． $4.6+0.4,7.2+0.8$

Build on expanded column addition to develop compact column addition with larger numbers．	1000400	$60 \quad 6$
	$+4000800$	$60 \quad 8$
	1000100	Significant time of expanded
	6000300	
Compact column addition with larger numbers．	5347	methods to
	2286	value．Methods
Use expanded and compact	＋1495	demonstrated
column addition to add amounts	121	side by side
of money．	9128	

Add like fractions，e．e． $1 / 2+1 / 2+1 / 8 \quad$ See year 3 bar model for
$0+\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$
$\frac{1}{3}$

Modelling addition by partitioning Adding by bridging

Adding multiples of 10 or 100 and adjusting

Adding decimals using straws／numicon

Year 4 Subtraction

Taking away

Use place value to subtract, e.g. $4748-4000$ or $4748-8$, etc.
Take away multiples of $10,100,1000, £ 1,10$ p or 0.1 , e.g. $8392-50$ or $6723-$ 3000 or $£ 3.74-30$ p or $5.6-0.2$
Partitioning, e.g. $£ 5.87-£ 3.04$ as $£ 5-£ 3$ and $7 p-4 p$ or $7493-2020$ as $7000-2000$ and $90-20$
Count back, e.g. 6482-1301 as 6482-1000 then - 300 then -1 (5181) Subtract near multiples, e.g. 3522-1999 or $£ 34.86-£ 19.99$

Find a difference between two numbers by counting up from the smaller to the larger, e.g. 506-387

Using number facts
Number bonds to 10,100 and derived facts, e.g. $100-76=24,1.0-0.6=0.4$ Number bonds to $£ 1$ and $£ 10$, e.g. $£ 1.00-86 p=14$ p or $£ 10-£ 3.40=£ 6.60$

Expanded column subtraction			Begin to use compact column			
600	110	16	6 II 16			
200	20	8		7	7	
- 300	50	8		3	5	
300	60	8		3	6	

Use counting up subtraction to find change from $£ 10, £ 20, £ 50$ and $£ 100$

Subtract like fractions, e.g. $3 / 8-1 / 8=2 / 8$

See year 3 bar model for subtracting fractions

Using place value to subtract

Counting up to find the difference
Counting up to the find difference

Modelling subtraction algorithm with dienes blocks

Linked $\times 2 \times 4$ and $\times 8$ to doubling Revise partition for doubling and halving as year $3 \quad$ Bar model for multiplication

Year 4 Multiplication

Counting in steps - sequences Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s $25 \quad 25 \quad 25$					
25: 50.75					
Doubling and halving Find doubles to double 100 and beyond using partitioning Begin to double amounts of money. E.g. $£ 3.50$ doubled is $£ 7$ Use doubling as a strategy in multiplying by 2,4 and 8, e.g. $34 \times 4=$ double 34 (68) doubled again (136)					
Grouping Use partitioning to multiply 2 -digit numbers by single-digit numbers Multiply multiples of 100 by single digit numbers using tables facts, e.g. $400 \times 8=3200$					
Use grid multiplication to multiply 3 -digit by 1 -digit numbers	x	200	50	3	
	6	1200	300	18	= 151
	253				
Use a vertical written algorithm (ladder) to multiply 3 -digit numbers by 1 -digit numbers	$\begin{array}{r} \\ \times \quad 6 \\ \hline 1200\end{array}$				
	1200				
	300			40	
	18		10	400	60
	1518		10	320	48
Use grid multiplication to multiply 2 -digit numbers by 2 -digit numbers				720	108
					$=828$

St ohn's Green Priman
St Johns Green Primary
School
Year 4 Division

Year 5 Mental Addition

Add 0.01 to 1.331
Ones Is Tenths 0.15 $\frac{1}{10}$ Hundredths 0.01 $\frac{1}{100}$ Thousandth $\frac{1}{1000}$ 0.00

Revising understanding of addition from year 4 with year 5

place value expectations
Adding and adjusting $2.39+1-0.1=2.39+0.9$

Year 5 Written Addition

Expanded column addition for money	$£ 14$	60 p	4 p
leading to compact column addition	$£ 28$	70 p	8 p
for adding several amounts of money	$+£ 12$	20 p	6 p
	$£ 1$	10 p	
Compact column addition to add	$£ 55$	60 p	8 p

Expanded models consolidate place value up to 1 million in year 5 . Similar models to be used with dienes blocks. The same model can be used to investigate addition of decimals

Year 5 Mental Subtraction

Using place value to subtract decimals

Using counters/coins to count up/find the difference

Applying number facts to decimals. $0.86+0.04+0.1=1$

Use counting up subtraction to subtract decimal numbers, e.g. 4.2-1.74

Subtracting fractions with like denominators, e.g. $1 \mathrm{~K} \cdot \mathrm{r}^{3} / \mathrm{as} 1^{2} / \mathrm{s}-3 / \mathrm{s}$ or $23 / 8-3 / 8=7 / 4$
(
Sam and Luis have a pizza each. Sam eats $\frac{3}{4}$ of his pizza. Luis eats $\frac{7}{8}$ of his pizza. How much pizza have they eaten altogether?

-200000

Using dienes to model column subtraction

Year 5 Mental Multiplication

Doubling and halving

Double amounts of money using partitioning, e.g. $£ 6.73$ doubled is double $£ 6$ ($£ 12$) plus double 73p (£1.46)
Use doubling and halving as a strategy in multiplying by $2,4,8,5$ and 20 .
E.g. $58 \times 5=1 / 2$ of 58 (29) $\times 10$ (290)

Grouping
Multiply decimals by $10,100,1000$ e.g. $3.4 \times 100=340$

Use partitioning to multiply friendly 2 -digit and 3 -digit numbers by single-digit numbers. E.g. 402×6 as 400×6 (2400) and 2×6 (12)

Use partitioning to multiply decimal numbers by single-digit numbers, e.g 4.5×3 as $(4 \times 3)+(4 \times 0.5)$
Multiply using near multiples by rounding, e.g. 32×29 as $(32 \times 30)-32$
Using number facts
Use times tables facts up to 12×12 to multiply multiples of the multiplier, e.g $4 \times 6=24$ so $40 \times 6=240$ and $400 \times 6=2400$
Know square numbers and cube numbers

Two thirds $\times 3$

$$
6 \times \frac{1}{3}=\text { ? }
$$

Multiplication by partitioning

Multiplying decimals by partitioning

Multiplying and dividing by 10,100

Multiplying by 5 by times 10 and halve

Using times tables facts and place value

| 2100000 | 700000×3 | 70000×30 | 7000×300 | 700×3000 | 70×30000 | 7×300000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 200000 | 700000×3 | 70000×3 | 7000×30 | 700×300 | 70×3000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 210000 | 7×30000 | | | | | | 210000 | 70000×3 | 7000×30 | 700×300 | 70×3000 |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 21000 | $\left[\begin{array}{lll}7000 \times 3 & 700 \times 30 & 70 \times 300 \\ \hline 2100 & 7 \times 3000 \\ \hline & 700 \times 3 & 70 \times 30 \\ \hline\end{array}\right.$ | 7×300 | | |

2100	700×3	70×30	7×300
210	70	7×30	
21	7×3		

	0.021	0.007×3	0.07×0.3	0.7×0.03

Grid method taught alongside other multiplication methods provides an effective way of consolidating place value knowledge and developing fluency short and long algorithms

Long multiplication

Year 5 Mental division

Doubling and halving
Halve amounts of money using partitioning,
e.g. half of $£ 14.84$ as half of $£ 14$ and holf of $84 p$

Use doubling and halving as a strategy in dividing by $2,4,8,5$ and 20, e.g. 115 +5 as double $115(230)+10$

Grouping

Divide numbers by $10,100,1000$ to obtain decimal answers with up to three places, e.g. $340 \div 100=3.4$.
Use the $10^{\text {th }}, 20^{\text {th }}, 30^{\text {th }} \ldots$ multiple of the divisor to divide friendly 2 -digit and 3 digit numbers by single-digit numbers, e.g. $186 \div 6$ as $30 \times 6(180)$ and 1×6 (6) Find unit \& non-unit fractions of large amounts, e.g. $3 /$ s of 265 is $3 \times(265 \div 5)$

Using number facts

Use division facts from the times tables up to 12×12 to divide multiples of powers of ten of the divisor, e.g. $3600 \div 9$ using $36 \div 9$
Know square numbers and cube numbers

Find fractions of an amount using a bar model
Sally buys four fifths of the shop's apples. If the shop had 30 apples, how many apples did she buy?

James had some football cards. He gave two fith s away. He now has 24 cards. How many did he have to start with?

Gun g x^{2}
St john's Green Primary St John's Green Primary
School Learn to thee, Live to te

Mental strategy of division linked to written version. 'How many 6 s in 326 ?

Grouping and exchanging of counters helps to model short division

Revising of number facts with decimals $\quad 0.05+0.05$ does not $=0.010$

Year 6 Written Addition

St John's Green Primar
School

Year 6 subtraction

Taking away
Use place value to subtract decimals, e.g. $7.782-0.08$ or $16.263-0.2$, etc. Take away multiples of powers of 10, e. 132,956-400 or $586,109-40,000$ or 7.823-0.5
Partition or count back, e.g. 3964-1051 or 5.72-2.01
Subtract near muitiples, e.g. 360,078-99,998 or 12.831-0.99

Counting up Count up to

Count up to subtract numbers from multiples of $10,100,1000,10,000$ Find a difference between two decimal numbers by counting up from the

Using number facts

Derived facts from number bonds to 10 and 100 , e.g. $0.1-0.075$ using $75+25=100$ or $5-0.65$ using $65+35=100$

Number bonds to $£ 1, ~ £ 10$ and $£ 100$, e.g. $£ 7.00-£ 4.37$ or $£ 100-£ 66.20$ using $20 p+80 p=f 1$ and $f 67+f 33=f 100$.

Compact column subtraction for large numbers					
2	14		7	15	
7	4	6	8	8	
-1	6	4	5	8	
1	8	2	2	7	

Use counting up subtraction when dealing with money, e.g. $£ 100-£ 78.56$ or £45.23-£27.57

Use counting up subtraction to subtract decimal numbers, e.g. 13.1-2.37

Subtracting fractions with unilike denominators, e.g. $18-2 / 3$ os $1^{3} / v-1 / 1 p$ or $15 / 12-8 / 12=7 / 12$

Expanded model helps to consolidate place value up to 10 million in year 6 . The same model can be used to investigate subtraction of decimals

Revision of subtraction strategies from year 5 with numbers up to 10 million and 3dp

onemetmonsw, Bar model diagrams from

Year 6 Multiplication

Doubling and halving

Double decimal numbers with up to
2-places using partitioning, e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)

Use doubling and halving as strategies in mental multiplication
Grouping
Use partitioning as a strategy in mental multiplication, as appropriate, e.g. 3060×4 as $(3000 \times 4)+(60 \times 4)$ or 8.4×8 as $8 \times 8(64)$ and 0.4×8 (3.2) Use factors in mental multiplication, e.g. 421×6 as 421×3 (1263) doubled (2526) or 3.42×5 as half of (3.42×10)

Multiply decimal numbers using near multiples by rounding, e.g. 4.3×19 as $4.3 \times 20(86-4.3)$

Using number facts

Use times tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to two decimal places, e.g. $6 \times 4=24$ and $0.06 \times 4=0.24$

Double 0.59

2100000		700000×3	70000×30	7000×300	700×3000	70×30000	7×300000
210000		70000×3	7000×30	700×300	70×3000	7×30000	
21000		7000×3	700×30	70×300	7×3000		
2100		700×3	70×30	7×300			
210		70×3	7×30				
21	$=$	7×3					
2.1		0.7×3	7×0.3				
0.21		0.07×3	0.7×0.3	7×0.03			
0.021		0.007×3	0.07×0.3	0.7×0.03	7×0.003		

Year 6 Written Multiplication

Short multiplication of 2-digit, 3-digit and 4 -digit numbers by 1 -digit numbers	3875
	$\times \quad 6$
	543
Long multiplication of 2 -digit, 3 -digit and 4-digit numbers by 2 -digit numbers	$\underline{23250}$
Short multiplication of decimal numbers using $\times 100$ and $\div 100$, e.g. 13.72×6 as $1372 \times 6 \div 100$	
Short multiplication of money, $£ 13.72 \times 6$	
Grid multiplication of numbers with up to 2 decimal places by single digit numbers	
Multiplying proper and improper fractions, e.g. $3 / 4 x^{2 / 3}$	
NB Grid multiplication provides a default method for ALL children	

When multiplying fractions by fractions, it is crucial that

Year 6 Division
Doubling and halving
Halve decimal numbers with up to 2 -places Halve decimal numbers with up to 2 -places using partitioning, e.g. half of 36.86 is half of
36 (18) plus half of $0.86(0.43)$ 36 (18) plus half of 0.86 (0.43)
t18

Use doubling and halving as strategies in mental division, e.g. $216+4$ is haif of 16 (108) and half of 108 (54)

rouping

Use $10^{m}, 20^{m}, 30^{m}, \ldots$ or $100^{\circ}, 200^{m}, 300^{\text {m }} \ldots . .$. multiples of the divisor to divide large numbers, e.g. $378+9$ as $40 \times 9=360$ and $2 \times 9=18$ so the onswer is 42 Use tests for divisibility, e.g. 135 divides by 3 as $1+3+5=9$ and 9 is in the $3 x$ able

Using number facts
Use division facts from the times tables up to 12×12 to divide decimal numbers by single-digit numbers, e.g. $1.17+3$ is $5^{1} / 200$ of $117+3(0.39)$

Short division of 3-digit and
4-digit numbers by single-digit 4 -digit nur
numbers
ong division of 3 -digit and 4 -digit numbers by two-digit umbers

Divide fractions by

whole numbers
$320=54 r^{2}$

Revising division methods from year 5
\square

Division of fractions by whole numbers

[^0]: Using partitioning to halve

